
/\ .algorithmic modeling
with Grasshoooer®

"Grasshopper seem s to be winning out in the
competitive struggle for domination as the preferred
tool for scripting, at least in the avant-garde segment
of the discipline".

Patrik Sc lium aclner

The aim of this publication is to provide techniques and strategieswhich enable designers to master visual

scripting utilizing Grasshopper®, one of the most popular and advanced algorithmic modeling tool.

This book is intended to guide readers through the essential concepts of algorithmic modeling both

ôr form-making and form-finding.

Grasshopper, a plug-in for Rhinoceros®, is a node-based editor developed by David Rutten*" at Robert

McNeel & Associates. Created in 2007 for Rhino 4.0 - originally named as Explicit History - was re

branded as Grasshopper in 2008, Within a few years the plug-in gained a vast community of users

and developers, including students, academics, and professionals. Grasshopper is available as a free

download and it runs on a licensed copy of Rhinoceros 5.0 or higher.

NOTE 6
David Rutten is a graduate of TU Delft Architecture and Urbanism faculties. He works for Robert McNeel &
Associates since 2006 on several programs, the most important of which is the Grasshopper visual programming
environment for Rhinoceros 3D. See A. Tedeschi, 2010, Interview with David Rutten. MixExperience magazine,
'Tools" issue.
http://content.yudu.com/Library/A1qies/mixexperiencetoolsnu/resources/index.htm.

http://content.yudu.com/Library/A1qies/mixexperiencetoolsnu/resources/index.htm

Grasshopper's is an unrivaled platform for formal exploration, that benefits from:

• Wide, dynamic and growing community

Grasshopper is not just a piece of software, it includes a dynamic network of users that

share works, knowledge, ask questions, and discuss challenging problems at www.

grasshopper3d.com.

• Constant updating

Grasshopper benefits from constant updating and improvements. Moreover, bug fixing

and new features are commonly based on users feedback.

• Ecosystem

A wide set of plug-ins developed for Grasshopper are available from independent

programmers. Loosely speaking, Grasshopper benefits from a plug-in ecosystem that

extends the software's potentials. For example plug-ins are available for dynamic

simulations, physics, structural and environmental analysis.

• Software interaction

Grasshopper has the potential to interact with other software; not only for file-compatibility

and interchange, but for real-time interaction between the algorithmic modeling

environment and external software (Excel®, Photoshop®, Revit®, Ecotect® etc.).

Hardware interaction

Grasshopper's plug-ins enable interactions in data input/output between Grasshopper

and hardware (Arduino®, Kinect® etc.).

This book will cover visual algorithmic modeling using Grasshopper, from the basic concept to more

advanced strategies. The main ambition is to provide the computational skills - based on a solid

understanding of mathematics, logics and geometry - required to face the new design challenges.

1.1 Prerequisites and installation
Grasshopper is not a standalone application, it operates as a plug-in for Rhinoceros. The installation

file can be downloaded from the website www.grasshopper3d.com {download section). Presently,

Grasshopper exclusively runs on Windows OS (Grasshopper Is not currently compatible with Mac

OS). Grasshopper is offered as a free download - without an expiration date - and is required to

run on a licensed copy of Rhinoceros 5.0 or higher. Future releases of Rhinoceros might embed

Grasshopper as a native feature.

Once installed, Grasshopper can be opened by grasshopper in the Rhino command line.

1.2 G rasshopper user interface
The Grasshopper editor consists of a window (A) that always works in parallel with the Rhinoceros

3D-modeling environment (B). Within the editor (A), users can build visual algorithms (C) by properly

connectinggraphical objects, called components. Components are actually the nodes of a parametric

diagram that defines and controls a 3D geometry (D) which is displayed in the Rhinoceros window

(B). Components represent primitives, geometric operations, logical functions etc.

FIGURE 1.1
The image shows the Rhino modeling environment (B) and the Grasshopper editor (A) which is a window that
works in parallel with Rhinoceros. D is a geometry "generated" by the visual algorithm (C).

http://www.grasshopper3d.com

The Grasshopper window is split into four sections, as shown in the following image.

® l=
(DC

Grsŝ «pper - unn*med
Fte Edi Wow Otmin ScUMn Hdp

Paiarm Ma(f» Saa Vector Cunt Surfiee M«^ lnHrs«cl Tf»n»to«m Tt«*8 W> MtllnxKte K»nj«roo UjosABm Brtni

B B B B B HI « □

1. The menu bar

Following Windows OS typical bar layout, the menu bar performs basic operations (open,

save, etc). On the far right, users can find the//Ve browser button which can be used to

switch between different loaded files; Grasshopper allows multiple files to be loaded

simultaneously. By default a new file is displayed as unnamed until it is saved under a

different file name.

2. The component tabs

Components do not work as "buttons". To enable them, users must drag the relative icons

onto the working area (4). Every component becomes a node of a visual algorithm.

3. The canvas toolbar

The canvas toolbar hosts visualization options.

4. The working area (canvas)

The canvas is the editor where users can create algorithms.

1.2.1 Component tabs

Grasshopper algorithms are node diagrams made of properly connected components. Components

represent primitives (e.g. points, curves, surfaces), geometric entities (e.g. vectors), geometric

operations (e.g. extrusion, rotation, revolution) and other categories. They are grouped in several

tabs [Params, Maths, Sets, etc.) each organized in panels. For example, the Params tab holds four

panels: Geometry, Primitive, Input and Util. Each panel has a variable number of components. This

book will use the notation component name (Tab > Panel) to indicate the location of a specific

component. Put another way. Line (Params > Geometry) means that Line component is found within

the Geometry panel of the Params tab.

Params | Maths Sets Vector Curve Surface Mesh Intersect Transform Display

B S i t u S
m A

Params Maths Sets | Vector | Curve Surface Mesh Intersect Transform Display

u t no-^ 1 U o 0 Q XYZ

n \ XVzia y XYZ o-^

Params Maths Sets Vector j Curve | Surface Mesh Intersect Transform Display

V it
K Cc r 0

/ m o

/ o y
D l

x d : A
<) ? V

X

M ffm
(f

FIGURE 1.2
The image shows three different component tabs - Params, Vector and Curve - with relative panels.

By default the tabs show a selection of components available within each panel. Each panel can be

expanded to display the entire set of components by clicking on the black stripe of a specific panel: a

dropdown menu will appear displaying a detailed list of components. Alternatively, users can enable

the Obscure Components mode in the menu bar (View > Obscure Components) to display the entire

set of components.

Rie EdI O M ay Solution Heip

Params | Sete Vectof Curve S irfece Mesh lntefs«ct Tranafomi

o # m m m m B
A ____ I

O Pon

^ Q rie

Cuni«

^ Plane

G Box

Mesh

^ Suface

^ Rdd
Geonetty Cadw

^ Grou)

Vector

^ CicularArc

^ Line

o Rectangle

© Brep

M e ^ Face

Twsted Box

Geometry

Geometry PipeSne

Transfomi

<3-

1.2.2 Working area; canvas

The canvas is the "blackboard" where users can build algorithms. Users can place a component on

the canvas in one of two methods:

• By dragging the relative icon onto the canvas;

• By double-clicking any free area of the canvas and typing the component's name in the pop

up search box referred to as the canvas search box. As the first letters of the components

name are typed in canvas search box, Grasshopper suggests a list of components that

match the search criteria.

Grasshopper - unnamed

Re B S Ospiay Solutiorx He^

f^ntns Maths Sets ' Vector | Curve Siaface U«sh Ir^ersect Transferm

<P9
0 9

^ P
<? &

t D
u V ’■f \ m

1:7 A*YZ s 13

g g 195% O '

Enter a search keyvmrd.

FIGURE 1.3
The image shows the canvas search box which allows you to find components by name.

FIGURE 1.4
As you enter the first letters, Grasshopper suggests a list of components that match your search.

The canvas toolbar - positioned above the working area - provides the open/save files buttons as

well as quick access to display and preview options.

1.3 Com ponents and data
As discussed in the introduction, an algorithm is a procedure that splits a complex task into a basic

list of well defined instructions. Grasshopper provides users with a friendly interface of components

to build a set of instructions as a visual algorithm. Therefore, it is essential to understand how

components operate.

There are three types of components:

1. Components that perform operations on data (standard components)

Most of the components in Grasshopper perform operations on data, meaning these

components expect a defined set of input data which is processed to generate an output.

For example, the point-component requires a set of numeric {x,y,z} coordinates as input

to generate a point as an output, while a loft-component requires a defined set of curves

as input to generate a surface as an output. The output of a component can be used as an

input for another component.

► d a ta

2. Input-components

Input-components provide data (numbers, colours, etc) which can be modified by the

user. They are hosted within the Input panel of the Params tab. Input-components do not

expect input data.

► d a ta

3. Components that store data (container components)

These components can be imagined as containers for data. They can collect data in several

ways, and can be used as input for other components. Container components are hosted

within the Geometry and Primitive panels of the Params tab and they are characterized by

a black-hexagonal icon.

^ data]>

A standard component placed on the canvas is represented by a node that requires a defined

set of data in order to perform a tasl< and generate an output. IVIost components consist of three

main sections: input, name, and output. The following image shows the component Construct Point

{Vector > Point) which generates a point in the Rhinoceros 3D environment according to its three

coordinates:

input name

1 1 1 1
c X H < X <
c Y) C Y Pt) c Y ^ J l P t)
c Z 1 C Z €

1 n
output

• The input section contains a variable number of input slots that are specific to each

component. For example, the Construct Point component requires {x,y,z} coordinates as

input. Each input requires properly formatted data.

• The name section shows an abbreviation of the components full name (e.g. Pt for Point). A

component can be renamed using the first line of the context menu, which appears by right-

clicking on the components name. Alternatively, Grasshopper can display an icon instead of

a name if users activate the Draw Icons mode on the menu bar (Display > Draw Icons).

2 En>l»<d
w t__ 1̂

■ Enab»«d
HeJp...

(X
..... > 1 (Y v / Pt)

1 Rak*.. <
o

Z

• The output section shows a variable number of outputs that are specific to each

component. For example, the ConstrucfPo/nf component has one output slot that generates

data in the form of a correctly formatted point defined by {x,y,z} coordinates.

If the Construct Point com ponent is placed onto the canvas a point appears immediately in the origin

of Rhino's space. This happens because Construct Point, like many components, contains default

data. In particular. Construct Point contains, by default, the following coordinates as input: x=0, y=0,

z=0. The objects (points, lines, surfaces, etc.) generated by Grassliopper are displayed by

default as red geometries in Rhino.

FIGURE 1.5
By default, the Construct Point component generates a point in the origin of axis.

To change the position of the point, users have to input values for the {x,y,z} coordinates. In other

words, data must be set inside the component.

Grasshopper allows users to set data in three ways:

• Local setting (1.3.1);

• Wired connection (1.3.2);

• Setting from Rhino (1.3.4).

In general, an algorithm is constituted by components which use all three strategies. The next

paragraphs discuss each method in detail.

1.3.1 Local setting of data

Data can be set locally by the context pop-up menu which appears by right-clicking on the specific

input slot. For Example, to change the X input, right-click on the X and select the Set Number option.

Anew value (e.g. X=3.0) can be entered and confirmed by clicking on Commit Changes. As a result, the

point moves three Rhino units in the x-direction, creating a point with coordinates {3.0, 0.0, 0.0}.

 ̂ X

Wire Display ►
^ Principal
^ Reverse
® Flatten
® Graft

I ® Simplify
! @ Expression >

1 Set Number ► |
h 1

! Set Multiple Numbers >
1-- 1

^ Commit changes
Manage Number collection ^ Cancel changes
Clear values
Internalise data
Extract parameter

If we repeat the procedure for Y and Z by entering, for example, Y=3.0 and Z=2.0, the Construct Point

component will generate a point with the coordinates {3.0, 3.0, 2.0}.

1.3.2 Wired connection

To build more complex algorithms wired connections are used to set data between components.

Wires conduct data from the output of a component to the input of another component.

The Construct Point component can receive data from other components that output numeric data.

For instance, the input-component Number Slider {Params > Input) generates a domain of numeric

data. By adjusting the central grip, a number can be output within the domain and can be used as

input for other components.

jsiid erjl <M- » 2 3 » ~[)

To transfer data to another component, press and hold the left mouse button on the output slot

of the number slider. A connecting wire will be extracted which can be used to transfer data to

the Construct Point component by dragging the end of the wire to the specified input slot. Once

a connection is established, the Number Slider will be renamed based upon the input the wire is

connected to.

3 0 _ _

3 0 |)

0 2

rH cooldtiat^ 3 0

[T c o ld h a t^ 3 0 |>

2 0

FIGURE 1.6
A Number Slider is automatically renamed according to the input name.

By moving the sliders grip, input values are updated changing the points position in real-time. The

change in data input can be visualized in Rhino's 3D environment. Once connected to a Construct

Point component, a Number Slider can be used to parametrically change the points position.

r
V
i.'
P-

Slider properties can be changed through the context menu accessible by double-clicking the slider

name (not on the grip). Within the context menu the Numeric Domain or the Min/Max value of the

slider as well as numerical Rounding: Floating Point Numbers (R), Integer Numbers (N), Even Numbers

(E) or Odd Numbers (O), can be specified. If the Number Slider rounding is set to R, the amount of

displayed Digits (decimal places) can be set.

Sliden

P r o p e r t ie s ________________
Name

B̂ vesson
aipajte [Shye&Te^

9ider accurac^r

Rounding R N E O
Digits [T]
Numeric domar
mn + 0

+ 1 0
Range 1 0

Nuneric value

Setting a Number Slider \s a procedure that slows down the construction of an algorithm: users have

to change the Numeric Domain (min and max) and define the numerical set.

A quicker and easier way to insert a slider with a specific value is to double click on a free area of the

canvas to recall the canvas search box. If a number (e.g. 5) is typed into the search box Grasshopper

suggests the Number Slider. If the slider is added to the canvas the component will be set on the

typed number (i.e. 5) with a defined default domain (i.e. 0-10).

m Number aider
k s i id e r j 5 0

The domain and a value for a slider can specified by typing 0<5<50 in the canvas search box. In this

case, the domain will be set between 0 and 50 and the slider will be set to a value of 5.

Numb«̂ Slider

0<5<50|
❖ 5

If 0.5 is typed in the canvas search box a slider set to Floating Point Numbers (R) will appear on the

canvas with one digit after the zero, a default domain between 0 and 1 and a value of 0.5.

(■fftferll 0.5 O >
0.5| ...

If 0-5 is typed in the canvas search box, a Slider set to -5 will appear on the canvas with a default

domain between 0 and -10. T y p i n g i n the canvas search box recalls the component; Subtraction.

Number Slider

0-5
Slider -5.000 O

Wired connections are used to build algorithmic sequences, they transfer data between output

and input of the components. For example, a line can be generated by connecting two points. In this

case a specific component is used: Line (Curve > Primitive). If the sliders values are changed, the points

{x,y,z} positions are recalculated and the magnitude and direction of the line updates associatively.

❖ 0

V o*H I rt

z K

FIGURE 1.7
A line generated as a connection between two points (renamed as Point A and Point B),

The /./ne-output can be defined as a parametric line, meaning the line is tied associatively to the six

slider parameters of the points, generating a set of lines defined by the possible combinations of the

sliders domains. Algorithms do not generate just one kind of output.

The algorithm above generates three kinds of output: two point-geometries and one line-geometry.

Established connections can be disconnected by right-clicking on the specific input slot: the context

pop-up menu will appear, and components can be disconnected by selecting the d/sconnecf submenu

and specifying the component to disconnect.

^|fcoo^tnate|

t * r , m m 0 2

[V coordinate ̂ 3 ■» [>■

X

Wire Disptay ¥

Dsscorvnect >

Principal

m Reverse

@ Flatten

m Graft

(B Simfrfify

m Bcpression ►

H

1.3.3 Warnings and errors

Algorithms can produce error messages and warnings. Grasshopper uses the background color of

components to indicate their status and report possible errors. Components display status based

on three different colors:

• Correct status (gray)

Acomponent which is properly connected displays a gray background. A working algorithm

is composed of components displaying correct status.

• Warning status (orange)

A warning status is indicated by an orange background. Usually, a warning is related

to a lacl< of data. For example, when a Line component is placed on the canvas it is in

warning status: displayed as orange. This is because the component requires two points (A

and B), in order to create a line. If points A and B are connected to input A and B, the Line

component turns gray and generates a line in Rhino.

Q Ln(Ltne)

This olflectconteins two warnings.
Q ick on the balloon to see dl messages

Input paranie1« A faiefi to colect data
Input pata<net€t B failed to coMect dab

A component in warning status always displays a "balloon" (if it does not appear users can

activate this function through Display > Canvas Widgets > Message Baiioons). Hovering the

mouse over the balloon activates a message-box which suggests the possible causes of

the warning.

An algorithm with "orange components" may still work in some cases, but in general, a lack

of data leads to unexpected or null results.

Error status (red)

An error status occurs if users do not fulfill the input requirements. In the comparison

between algorithms and recipes it was noted that some steps require "ingredients", others

"temperatures", still others require "times". Similarly, each component's input expects a

defined type of data. For example, if users connect the A-input of the Line component

using a numeric value instead of a described point {x,y,z}, the Line component turns red

because input A and B must be formatted as a point.

I' start Point]| 5 0

1 X coordinate")! 0 3 X

h a m m m fi 0 3 h - < Y a. Pt

1 Z coordinate j 0 2 Z

Ln(Line)

TNs otfect contana cne eaor
Click on the bdloon to see messages

Data coflveniMi faHed from Nundier to Pfmt

A component in error status does not generate any result. If we connect a component

with a "red component" no data will be created or transferred between them. For this

reason, a component in error status affects the entire set of components that are directly

or indirectly connected with the component in error status. An error status can be fixed

by correcting the input data.

1.3.4 Setting from Rhino

Data can also be set from existing Rhino geometry. For example, a line can be created between

two points that exist in Rhino. Using the Line component users can right-click on the A-input slot

and select the Set one Point option from the contextual menu. The Set one Point option allows users

to select a point from Rhino. When users click on Set one Point, Grasshopper's window minimizes,

allowing the selection.

A

Bake...

9 Runtime warnings >

Wire Display >

Principal

m Reverse

B Flatten

a Graft

B Simplify

B Expression ►

Set one Point

Manage Point collection

Once users set both A and B input points, the component turns gray and generates a line. Such a

method directly stores a Rhino's objects inside an input. If the points move in Rhino the line will be

associatively updated. To "empty" an input, right-click on the input slot to recall the contextual menu

and select Clear values. Alternatively, Rhino's geometry can be collected using specific container

components (see 1.3). The Geometry and Primitive panels of the Params tab hold a set of black-

hexagonal icons for components that store data. To set a point, select the component Point

(Params > Geometry) and place it on the canvas, right-click on the component and select the Set one

Point option within the context menu.

O O Vector

0 Circle QfcularAfc

Q jfve O L>ie

Q Rane o Rectangle

Q Box o Brep

Mesh m Mesh Face

€► Surface e Twisted Box

O Beld Geom^ry

o Geom^ry Cache Geometry Ppeline

Group Q Tran^onn

1 —
9 Enabled

WrtD«|)t*y »
@ Rcwm

e FMen
m Crrt
® S«ipWy
m

SctMwPomt
SctMulM<Pe^
Mw»9e toUtction

Cle*r««iutt

tutiKt pwanwtcr

«» H-p.,

For example, to create a line between two Rhino points: collect the points data with two Point

components and connect them with wires to a Line component.

< Q T > ^

() pt)>— — <I t

The container components do not perform any operations, tliey just store data. These components

can be used to collect any type of geometry or object from Rhino. Each container component expects

a defined type of geometry. In order to collect curves, the Curve component would be selected.

Correspondingly, a Point component is unable to collect curves.

(j C fv |)

The Geometry container is a versatile component which can be used to store any kind of geometry

(points, curves, solids etc.). To set a geometry or multiple geometries right-click on the Geometry

component and select the Set or)e Geometry or Set Multiple Geometries option within the context

menu, respectively.

(j Geo j)

The container components also provide an input slot that allows components to store data collected

from other components.

<1 "

< r x > ^
A

Grasshopper's geometry, displayed in red, overlaps the imported geometries that exist in Rhino. When

geometry is "set". Grasshopper establishes a continuous link with Rhino, meaning if geometry is deleted

in Rhino, the specific container component turns orange because it is no longer collecting data.

Container components allow data to be permanently stored by right-clicking on the geometry

component and selecting the Internalise data option from the context menu. If this option is selected.

Grasshopper will import the geometries data, breaking the link with Rhino, meaning if the original

geometry is deleted the specific component will continue to store the data. For example, if a point is

imported from Rhino using the Point component and internalised, the point can be deleted in Rhino

and still exist as stored data in Grasshopper. The points {x,y,z} location can be changed by selecting

the Point component and using Rhino's Gumball to change the point's position.

Pt

FIGURE 1.8
If you internalise a point in Grasshopper and then you click on the relative box-component, the Rhino's Gumball
appears on the point, so you can easily change its position.

1.4 Save and bake
1.4.1 Save

Algorithms can be saved using the Save Document or Save Document As options available in the File

menu of the Menu Bar. The default extension for Grasshopper's files is .gh.

The .gh files are not executable. Therefore, to open a previously saved algorithm, users have to start

Rhinoceros, load Grasshopper and open the desired file.

grasshopper file gh.gh grasshopper file ghx-ghx

The .gh file extension is formatted in binary, meaning it stores data as pure bytes. Grasshopper

files can also be saved as .ghx. The .ghx file extension is written in XML format, meaning it can be

modified using text-editors. For this reason, the .ghx files are bigger than .gh files.

1.4.2 Bake

In the previous sections, two parametric points was generated and associated to a line creating

a basic algorithm. The algorithm's result was displayed as red preview geometries in the Rhino

environment. Preview geometries cannot be edited, meaning users cannot select them, save them

as a Rhino file, render them, etc. Moreover, if users close the Grasshopper file these objects will

disappear. The reason for this is that Grasshopper generates not just one geometry but an entire

set of geometries that can be varied by changing the input parameters. To edit one of the possible

configurations generated by an algorithm, users have to "bal<e" the Grasshopper preview into the

Rhino environment. Every component that generates a preview can be baked by right-clicking on

the component and selecting the bake option from the context menu. For example to bake the Line

component, right-click on it and select Bal<e.... Baking the component makes the line editable in

Rhino.

I t n iw n r j

I 'r a — r i T ^

— < X K

— — < y E pt

-- (z K

m ►review

y y Enabled

^ Bake..,

Help...

The Bake Attribute window, which opens when Bake... is selected allows users to set several attributes,

such as: the target layer, the color of the baked geometry, and the possibility to group objects.

Attributes

Name

1 Layer 02
i Layer 03

Lay«-

Colour m By Layer
Decorations |None
Display Oefaiit -
Mode Nomial -
Group □ Yes. please

UserTejd

1 OK 11 1

After baking, the geometry can be changed by manipulating the input parameters within Grasshopper.

Grasshopper geometry is parametric and the number of solutions are only limited by the input

parameters combinations. To undo a bake operation, simply delete the geometry in Rhino or type undo

in the Rhino command line. Grasshopper cannot bake geometry if any command is running on Rhino.

1.5 Display and control
Grasshopper uses colors and graphics to report component states and display-modes.

1.5.1 Preview quality. Enable/disable preview

Working components generate a result that are, by default, represented by a red preview color in Rhino.

Color and quality of the preview can be set through the Canvas Toolbar. In particular, the preview color

can be set by the Document Preview Setting option, while the quality of visualization can be modified

through the Preview Mesh Quality option. Both options are contained in the canvas toolbar.

O -

Document Preview Settings

H H H i a

Q

m

Qsable Meshing

Low Quality

High Quality

Document QuaKy

Q CustwnOu^

Edit Custom QuaKy_

Bump Preview

The preview of a geometry can be disabled by right-clicking on the name of the component and

selecting the preview option from the context menu. When you disable the preview the component

turns dark grey.

v g p , >

Pi

& Preview

D Enabled

Bake...

Help...

Enabling/disabling preview is crucial when algoritlnms become complex. Algorithms can be imagined

as a construction history, it is unnecessary to visualize all the steps that lead to the final result.

1.5.2 Enable / disable objects

Unlike the Preview option, which does not affect the functioning of a component, when a component

is disable it will no longer operate. A disabled component can be distinguished by the faded gray

color of the background and name section.

Disabling a component disables all parts of the algorithm that rely on the disabled node for input.

Preview

[B l Enabled

Bake...

Help...

V : I!'*-
Y a Pt

i z

Many productivity tools so far discussed are included in the Radial Menu which can be opened

by clicking the spacebar, including; navigation, preferences, group, cluster, preview/hide, enable/

disable, bake, zoom, disable solver, recompute, and find. For example, to disable the preview of two

or more components: select the components, press the spacebar and click on the "masked face" to

disable the preview. Other tools of the Radial Menu follow a sim ilar logic.

1.5.3 Wire display

If the Draw Fancy Wires mode is activated {Display menu > Draw Fancy Wires), Grasshopper

differentiates types of connecting wires according to their type of data structure. In particular:

• Orange connector

No data is being transmitted between components.

i Geo
no data

Thin black connector

Just one datum (one number, one geometry, etc) is being transmitted between components.

<[Geo p"
one datum

>
0
S

Wide black connector

Two or more data items are being transmitted between components.

<j G e o)>=
two or more data

A fourth type, the dashed wire will be discuss later in chapter 5.

Grasshopper allows users to set "wireless" connections, making a wire invisible unless one of the

connected components is selected. This option can be activated within the context menu of every

input slot by selecting Wire Display > Hidden.

<(Geo)>= k
6 i
Bake... I

Wire Display * jE] Defauft

Disconnect > S Faint

(§ Hidden
^ Principal

Reveree

@ Flatten

® Graft

® S irr*p %

Set one Geometry

Set Muftif^e Geometries

Manage Geometry coltection

Clear values

Internalise data

Extract parameter

^ Help...

<T Geo J)

.5 G rasshopper flow
It is important to point out that wires can only connect the output of a generic component (A) with the

input of a component (B) that doesn't precede (A) in the algorithmic sequence, in other words, the

data stream can be imagined as a fluid that flows through the components from left to right.

Consequently, is not possible to create a loop in Grasshopper, except using special components

which can be discussed in chapter 7.

The Grasshopper logic sequence can be imagined as a construction h istory: Grasshopper stores

the output of each instruction. To display the final output of an algorithm all nodes except last

component must be un-previewed. If users do not hide components the algorithm will generate

geometry in which the final step overlap the previous steps.

o
d r)

O

In the following image all the components are turned off except the last component, allowing the

final output of the algorithm to be visualized without overlap the previous steps.

o

1 H
1 H

In the following image all the components are turned off except an intermediate step.

)>-<
H

4

1.7 Basic concepts and operations
This section is a preview of topics that will be discussed, in depth, in following chapters. Here we

will focus on components that find specific points on objects or perform basic operations such as

moving objects, as well as visualization components.

1.7.1 Object snap in Grasshopper

The drawing accuracy of CAD software relies on Object Snaps or Osnap controls. The Object Snap

tools allows users to select strategic locations to connect objects. For example, a line has three main

points that can be snapped to: a start point, a mid point, and an end point. Grasshopper does not

function under the CAD snap logic, instead, it relies on defined algorithmic logic to create the same

functionality.

Specific points on a curve can be found using the component Point on Curve (Curve > Analysis). The

Point on Curve slider defines a point on a curve by "reparameterizing" a curve's length as a unit of

1. Correspondingly, the Point on Curve component set to a value of 0 will define a point at the start

point and value of 1 the end point. By default the component is set to 0.5, the mid point. A specific

numeric value can be chosen by right-clicking on the component to open the context menu and

selecting the desired input value (start, quarter, third, mid, two thirds, three quarters, end). Arbitrary

points along a curve can be "snapped to" by adjusting the slider's grip between 0 and 1. The following

example shows how to create a line which connects a point C to the midpoint of a line between two

points A and B.

I'Xcoortlinati^

IY ccKinljiatt I 6 »
cooHlinale~~j » l"

jYcooniinate j 5 0

6 ^

The component End Points (Curve > Analysis) can be used to quickly exctract the start point (S-output)

and end point (E-output) of a given curve. The following example demonstrates how the End Points

component can be used to access the end points of a curve set in Rhino (the curve could alternatively

be described in Grasshopper), then use the End Points component output to generate two lines

between the start and end points and a third defined point.

|'Xcoordinate"j 0 4 (
jifcM ltfnate j 5 0

jrZ coordinate "j 1 0 (

<[Crv |>k i . c H 'P 1'
i Q e >“ — <

End Points

The component/Ireo (Surface > Analysis) can be used to extract the geometric centroid of a planar

closed curve. The component also calculates the area (A-output) of the input curve. The following

example demonstrates how the Area component can be used to access the centroids of two closed

curves, then connect the points to create a line.

The component Volume (surface > Analysis) can be used to extract the geometric centroid of a closed

three-dimensional geometry. The Volume component output calculates volume (V-output) and centroid

(C-output). Data output, such as area and volume for the Volume component, can be displayed using the

component Pone/(Params > Input). The following example calculates the volume of a Rhino set geometry

and displays the result as a single output in a panel. If multiple geometries were set, the panels would

calculate the volume of each object, and display the results as specific items in the panel.

<f Geo j>

1.7.2 Merging data

The component Merge (Sets > Tree) allows two or more data flows to converge in a single list. With

reference to the previous exercise, the following example shows how to use just one Line component,

instead of two, by collecting the start point and end point by the Merge component.

I T coordinate '— - - 5 ❖

I'l'coordinate 1 O

<f Cry]>“

Wires containing more than one item are displayed as a thickened line. For instance, after the merging

operation the wire contains more than one item and is displayed as a thicker line (see 1.5.3).

When the Merge component is placed on the canvas, it displays two Inputs (D1 and D2). Once the 02-

input is receiving data (i.e. has a wired connected). Merge automatically adds a D3-input. The Merge

component maintains a record of the connection-order via the progressive index of the D-input.

Additional D-inputs can be manually added by using the Zoomable User Interface. The interface

(available on some components) adds an input by clicking on the "+" buttons which are visible after

zooming-in on the specific component.

D3
m .

1.7.3 Dividing a Curve

The component Divide Curve (Curve > Division), divides an open or closed curve into equal arc length

segments. More specifically, given a curve set from Rhino (C-input) and an integer for the number of

subdivision (N-input), N-̂ 1 points (P-output) will be generated in case of an open curve and N points

in case of a closed curve. The points will be stored in a single list.

The index number of each point and the points' order can be displayed using the component Point

List (Display > Vector). Display components do not have an output section as they are used for

visualization. The component Point List allows users to set the text-size by the S-input.

► 5

1.7.4 Moving an object / vectors

When manipulating objects using a traditional modeling software, many mathematical/geometrical

operations are blindly performed. For example, when vertically moving an object, the movement

is performed according to a specific vector. Vectors are a geometric entities defined by direction,

sense and length (or magnitude).

The component Move (Transform > Euclidian), moves geometries according to a specified vector.

Vectors can be defined by several components (Vector > Vector). For instance, vectors can be defined

by three component parts using the component VectorXYZ (Vector > Vector) or by specifying a default

unit vector according to an axis: UnitX, Unit Y or Unit Z {Vector > Vector). The following example uses

the Move component to translate an input geometry (G) along a vector (T). The vector is defined

through a UnitX component which, by default, is a unit vector whose direction and sense is parallel

to x-axis and length equal to 1. In order to amplify the vector (and consequently, the movement) it

is enough to connect a Number Slider to the F-input of UnitX. According to the construction history

(see 1.6) Grasshopper displays the original and the translated geometry. In order to display just the

moved geometry, the Geometry component must be turned off.

<r Geo j>"

Fartor i 0 2
I

])—

By default vectors are not previewed, they can be displayed using a specific visualization component:

Vector Display (Display > Vector). Vector Display requires a start point (A) and the vector to display (V).

1.7.5 Custom preview

The default red-preview of Grasshopper geometries can be modified through the Document Preview

Settings. Users can alternatively customize the preview of single components using Custom

Preview (Display > Preview). Custom Preview relies on the component Colour Swatch (Params > Input).

The color and transparency level can be set by left-clicking on the node to recall a context menu.

I^Swat*

